Acid Catalyzed *tert*-Butylation and Tritylation of 4-Nitro-1,2,3-triazole: Selective Synthesis of 1-Methyl-5-nitro-1,2,3-triazole via 1-*tert*-Butyl-4-nitro-1,2,3-triazole

Yuliya V. Filippova,^a Anna G. Sukhanova,^a Sergei V. Voitekhovich,^b* Vadim E. Matulis,^b Gennady T. Sukhanov,^a Yury V. Grigoriev,^b and Oleg A. Ivashkevich^b

^aInstitute for Problems of Chemical and Energetic Technologies of the Siberian Branch of the Russian Academy of Sciences, 1 Socialisticheskaya Street, Biysk 659322, Russia ^bResearch Institute for Physico-Chemical Problems of Belarusian State University, Minsk 220030, Belarus *E-mail: azole@tut.by Received December 20, 2010 DOI 10.1002/jhet.933 View this article online at wileyonlinelibrary.com.

4-Nitro-1,2,3-triazole was found to react with *tert*-butanol in concentrated sulfuric acid to yield 1-*tert*-butyl-4-nitro-1,2,3-triazole as the only reaction product, whereas *tert*-butylation and tritylation of 4-nitro-1,2,3-triazole in presence of catalytic amount of sulfuric acid in benzene was found to provide mixtures of isomeric 1- and 2-alkyl-4-nitro-1,2,3-triazoles with predominance of N2-alkylated products. A new methodology for preparation of 1-alkyl-5-nitro-1,2,3-triazoles from 1-*tert*-butyl-4-nitro-1,2,3-triazole via exhaustive alkylation followed by removal of *tert*-butyl group from intermediate triazolium salts was demonstrated by the example of preparation of 1-methyl-5-nitro-1,2,3-triazole.

J. Heterocyclic Chem., 49, 965 (2012).

INTRODUCTION

Nowadays N-alkylation of 4-nitro-1,2,3-triazole (1) is the most common and simple and, in many cases, the only synthetic pathway to N-substituted 4-nitro-1,2,3-triazoles, which are of interest as high-energetic materials and pharmaceuticals [1–3]. Previously, it has been shown that alkylation of triazole 1 under basic and neutral conditions is not regioselective and proceeds on all three nitrogen atoms of heteroring giving mixture of isomeric 1-*R*-4-nitro- (2), 2-*R*-4-nitro- (3), and 1-*R*-5-nitro-1,2,3-triazoles (4) [1,4]. In some cases 1,3-disubstituted 4-nitro-1,2,3-triazolium salts (5) are also observed in resulted mixture of products due to exhaustive alkylation of 2 or 4 [5] (Scheme 1).

In general, derivatives **4** are less accessible in comparison with other N-substituted 4-nitro-1,2,3-triazoles. At the same time they are characterized with highest enthalpy of formation [6] and highest basicity [5] among isomers **2-4** and therefore they are most attractive as ligands for preparation of energetic metallocomplexes. In the course of our investigations in the field of acidcatalyzed alkylation of azoles [7] we have studied alkylation of **1** with *tert*-butanol and triphenylmethanol. Moreover, we present new methodology for preparation of 1-alkyl-5-nitro-1,2,3-triazoles **4** by exhaustive alkylation of 1-*tert*-butyl-4-nitro-1,2,3-triazole (**6**) followed by de-*tert*-butylation of intermediate 1-*tert*-butyl-3-alkyl-4nitro-1,2,3-triazolium salt.

RESULTS AND DISCUSSION

We found that **1** reacts with *tert*-butanol in concentrated sulfuric acid to yield 1-*tert*-butyl-4-nitro-1,2,3-triazole (**6**) as the only reaction product. The isolated yield of **6** was 71%. It should be noted that this reaction is a new example of selective alkylation of azoles with alcohols in acidic medium. Previously regioselectivity was also observed under alkylation of 5-*R*-tetrazoles and some 1,2,4-triazoles in analogous conditions [7,8].

Y. V. Filippova, A. G. Sukhanova, S. V. Voitekhovich, V. E. Matulis, G. T. Sukhanov, Y. V. Grigoriev, and O. A. Ivashkevich

Scheme 1

Parent 1,2,3-triazole was found to react with isopropanol in concentrated sulfuric acid giving only 1-isopropyl-1,2,3triazole as reaction product [9]. The regioselective course of alkylation of 1,2,3-triazoles in concentrated sulfuric acid can be clarified in the view of specificity of high acidic medium and thermodynamic control of alkylation process. In acidic medium triazole 1 being weak base (pK_{BH+} = -6.80 [10]) undergoes protonation giving 1H,3H-4-nitro-1,2,3-triazolium cation. The calculated ratio between concentrations of free triazole 1 and above mentioned cation comes to ~ 1 : 1200 in 96% sulfuric acid (H_0 = -9.88). Electrophilic attack at endocyclic nitrogen atoms, which are involved in distributing positive charge is unlikely to occur due to electrostatic reasons [9]. Probably, tert-butyl cation generated from tert-butanol attacks neutral molecules of 1 providing 1tert-butyl-3H-4-nitro-1,2,3-triazolium cation which is converted after deprotonation into triazole 6 (Scheme 2).

Formation of 1-*tert*-butyl-3*H*-4-nitro-1,2,3-triazolium cation is preferred due to thermodynamic factors. Quantum-chemical calculations of the relative energies shows that 1-*tert*-butyl-3*H*-4-nitro-1,2,3-triazolium cation is most stable among cations formed by protonation of isomeric *N*-*tert*-butyl-4-nitro-1,2,3-triazoles (Table 1). Moreover, due to heterolysis of the exocyclic N—CMe₃ bond these triazoles can undergo migration of alkyl substituent in media of high acidity, similarly to *N*-*tert*-butyltetrazoles [11].

Proposed mechanism of N1-alkylation is also confirmed by results of *tert*-butylation and tritylation of **1** in presence of catalytic amount of sulfuric acid in benzene. Under these conditions mixtures of isomeric 1- and 2alkyl-4-nitro-1,2,3-triazoles **6-9** were obtained (Scheme 3). The ratio of isomers **6:7** and **9:8**, determined from the intensities of the singlets of the protons on the endocyclic carbon atom in ¹H-NMR spectra, was 1:9 and 1:8, correspondingly. Observed drastic change in regioselectivity of alkylation can be explained with essential lowering of acidity of reaction medium. Since under described conditions *N*-alkyltriazoles exist in neutral form and there is no possibility of mutual interconversions isomer ratio is determined by kinetic control [5].

Taking into account selectivity of quaternisation of 1-alkyl-4-nitro-1,2,3-triazoles with dialkyl sulfates [12] and possibility of de-tert-butylation of azolium salts [13] we investigated tandem methylation and de-tertbutylation reactions of 6 to elaborate new selective route to 1-alkyl-5-nitro-1,2,3-triazoles from available triazole 6. Previously such methodology was successfully used for selective preparation of 1,5-disubstituted tetrazoles [14], including binuclear ones [15], from 5substituted tetrazoles via 2-tert-butyl derivatives and 1,3,5-trisubstituted tetrazolium salts. Triazole 6 was found to react with excess of dimethyl sulfate giving 1-*tert*-butyl-3-methyl-4-nitro-1,2,3-triazolium salt 10 which was isolated as perchlorate 11 with 72% yield. De-tert-butylation of 10 was achieved under refluxing with hydrochloric acid, and target 1-methyl-5-nitro-1,2,3-triazole (12) was obtained with 51% overall yield (Scheme 4).

Structural assignments of synthesized *N*-trityl- and *N*-tert-butyl-4(5)-nitro-1,2,3-triazoles were made based on the analysis of their ¹H- and ¹³C-NMR spectra in comparison with those of *N*-ethyl-4(5)-nitro-1,2,3-triazoles [4].

EXPERIMENTAL

¹H- and ¹³C-NMR spectra was determined on a 400 MHz Bruker spectrometer in DMSO- d_6 as a solvent. Melting points were determined with Heating Table Boetius with viewing device PHMK 05. 4-Nitro-1,2,3-triazole was prepared according to the literature procedure [16]. Quantum-chemical calculations of relative energies of isomeric molecules and cations were carried out with the aid of the Gaussian-03 set of programs [17] within the framework of DFT theory (B3LYP functional) [18] as described in [5].

1-tert-Butyl-4-nitro-1*H***-1,2,3-triazole (6).** *Tert*-butanol (2 g, 27.5 mmol) was added dropwise with stirring to a solution of 4-nitro-1,2,3-triazole (2.85 g, 25 mmol) in 96% sulfuric acid (18 mL). The mixture was further stirred at room temperature for 3 h. Then the reaction mixture was poured into ice (~100 g), extracted with dichloromethane (4 \times 25 mL). Combined extracts were washed by aqueous solution of sodium

Journal of Heterocyclic Chemistry DOI 10.1002/jhet

Table 1

Calculated relative energies of isolated cations of protonated <i>N-tert</i> -butyl-4(5)-nitro-1,2,3-triazoles at 0 K (ΔE_o) and their Gibbs free energies ($\Delta G_{298,H2O}^o$) in aqueous solution.						
Cation	H € N I N N t-Bu	$O_2 \xrightarrow[t-Bu]{H} N \xrightarrow[t]{N} N$	$\begin{array}{c} \overset{t\text{-}Bu}{\overset{0}{\underset{N}{\Rightarrow}}} N \\ O_2 & \overset{1}{\underset{N}{\xrightarrow{N}}} N \\ H \end{array} \\ \end{array} \\ \xrightarrow{N} \end{array} \\ \xrightarrow{N} N \\ N_2 \end{array}$	t-Bu N∽N N≫ N≫ N⊘	, N = N N = 0 H	t-Bu / N N N NO₂
$\Delta E_{\rm o}$ (kJ/mol) $\Delta G_{298,{ m H2O}}^{\rm o}$ (kJ/mol)	0.0 0.0	-38.3 -15.2	-8.4 -6.1	-3.5 19.1	-11.0 14.8	30.5 57.2

carbonate and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure. Treatment of residue with diethyl ether afforded **6** (3.04 g, 71%). Colorless crystals, mp 68–70°C (from ethanol).

¹H-NMR: δ 9.43 (s, 9H, *t*-Bu), 1.65 (s, 1H, CH); ¹³C-NMR δ: 153.5, 123.3, 62.3, 29.4; *Anal.* Calcd. for $C_6H_{10}N_4O_2$: C, 42.35; H, 5.92; N, 32.92%. Found: C, 42.55; H, 5.63; N, 32.49%.

2-tert-Butyl-4-nitro-2H-1,2,3-triazole (7). Mixture of 4-nitro-1,2,3-triazole (1.15 g, 10 mmol), *tert*-butanol (0,81 g, 11 mmol), benzene (25 mL) and 96% sulfuric acid (2–3 drops) was heating under boiling with Dean-Stark apparatus for 1.5 h. Then the reaction mixture was evaporated under reduced pressure. Obtained solid residue containing mixture of **6** and **7** (molar ratio 1:9) was recrystallized from water-isopropanol (10:1) giving pure **7** (1.2 g, 70%). Colorless crystals, mp 35–38°C.

¹H-NMR: δ 8.71 (s, 1H, CH), 1.65 (s, 9H, *t*-Bu); ¹³C-NMR δ: 152.4, 130.9, 65.6, 28.5; *Anal.* Calcd. for $C_6H_{10}N_4O_2$: C, 42.35; H, 5.92; N, 32.92%. Found: C, 42.42; H, 5.83; N, 32.89%.

Mixture of 2-trityl-4-nitro-2H-1,2,3-triazole (8) and 1-trityl-4-nitro-1H-1,2,3-triazole (9). Mixture of 4-nitro-1,2,3-triazole (1.15 g, 10 mmol), triphenylmethanol (2.86 g, 11 mmol), benzene (25 mL) and 96% sulfuric acid (2–3 drops) was heating under boiling with Dean-Stark apparatus for 3 h. Then the reaction mixture was evaporated reduced pressure, and solid residue was washed with diethyl ether, water and dried under reduced pressure. Mixture of 8 and 9 (molar ratio 8:1) was obtained as white amorphous solid (2.85 g, 75%).

¹H-NMR: δ 8.84 (s, 1H, CH of isomer **8**); 8.81 (s, 1H, CH of isomer **9**), 7.01–7.46 (m, 5H, Ph); ¹³C-NMR δ: 152.6, 147.7, 140.8, 140.5, 131.3, 129.7,129.5, 128.5, 128.3, 127.8, 127.7, 127.4, 126.5, 84.1. *Anal*. Calcd. for $C_{21}H_{16}N_4O_2$: C, 70.77; H, 4.53; N, 15.72%. Found: C, 70.60; H, 4.40; N, 15.68%.

3-tert-Butyl-1-methyl-5-nitro-3H-1,2,3-triazolium perchlorate (11). Mixture of **6** (2.55 g, 15 mmol) and dimethyl sulphate (4.3 mL, 45 mmol) was heated at 90–95° for 0.5 h. Then saturated aqueous solution of ammonium perchlorate (1.76 g, 15 mmol) was added to the solution. The resulting precipitate was filtered off, washed with water and dried *in vacuo* to give **11** (3.07 g, 72%). Colorless crystals, mp 208–210°C (decomp.).

¹H-NMR: δ 10.31 (s, 1H, CH), 4.56 (s, 3H, Me); 1.75 (s, 9H, *t*-Bu). ¹³C-NMR δ: 145.5, 128.5, 69.2, 42.3, 28.6. *Anal.* Calcd. for $C_7H_{13}CIN_4O_6$: C, 29.54; H, 4.60; N, 19.68%. Found: C, 29.78; H, 4.24; N, 19.50%.

1-Methyl-5-nitro-1H-1,2,3-triazole (12). Mixture of **6** (2.55 g, 15 mmol) and dimethyl sulphate (4.3 mL, 45 mmol) was heated at 90–95° for 0.5 h. Then hydrochloric acid (36%, 45 mL) was added and the mixture was stirred for 10–15 min. Excess of dimethyl sulphate was separated off. The aqueous solution containing salt **10** was heated under reflux for 10 h. Then the reaction mixture was extracted with dichloromethane (4 \times 25 mL). Combined extracts were washed by aqueous solution of sodium carbonate and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give **12** (0.98 g, 51%). Colorless crystals, mp 70–71°C (from ethanol).

¹H-NMR: δ 8.63 (s, 1H, CH), 4.32 (s, 3H, Me). ¹³C-NMR δ: 144.9, 132.9, 38.8. *Anal.* Calcd. for $C_3H_4N_4O_2$: C, 28.13; H, 3.15; N, 43.74%. Found: C, 28.38; H, 3.10; N, 44.01%.

Acknowledgments. The authors are grateful to the Belarusian Republican Foundation for Fundamental Research for supporting this study (Grant No. X09CO-012).

Journal of Heterocyclic Chemistry DOI 10.1002/jhet

Y. V. Filippova, A. G. Sukhanova, S. V. Voitekhovich, V. E. Matulis, G. T. Sukhanov, Y. V. Grigoriev, and O. A. Ivashkevich

REFERENCES AND NOTES

[1] (a) Vereschagin, L. I.; Pokatilov, F. A.; Kizhnyaev, V. N. Chem Heterocycl Compd 2008, 44, 1; (b) Vereschagin, L. I.; Pokatilov, F. A.; Kizhnyaev, V. N. Khim Geterotsikl Soedin 2008, 44, 3.

[2] (a) Krivopalov, V. P.; Shkurko, O. P. Russ Chem Rev 2005,
 73, 339; (b) Krivopalov, V. P.; Shkurko, O. P. Usp Khim 2005, 73,
 369.

[3] Millar, R. W.; Hamid, J.; Endsor, R.; Swinton, P. F.; Cooper, J. Prop Explos Pyrotech 2008, 33, 66.

[4] Voitekhovich, S. V.; Gaponik, P. N.; Lyakhov, A. S.; Filipova, J. V.; Sukhanova, A. G.; Sukhanov, G. T.; Ivashkevich, O. A. Tetrahedron Lett 2009, 50, 2577.

[5] (a) Ivashkevich, O. A.; Matulis, V. E.; Gaponik, P. N.; Sukhanov, G. T.; Filippova, J. V.; Sukhanova, A. G. Chem Heterocycl Compd 2008, 44, 1472; (b) Ivashkevich, O. A.; Matulis, V. E.; Gaponik, P. N.; Sukhanov, G. T.; Filippova, J. V.; Sukhanova, A. G. Khim Geterotsikl Soedin 2008, 44, 1816.

[6] Matulis, V. E.; Ivashkevich, O. A.; Gaponik, P. N.; Elkind, P. D.; Sukhanov, G. T.; Bazyleva, A. B.; Zaitsau, D. H. J Mol Struct (Theochem) 2008, 18, 854.

[7] (a) Grigor'ev, Y. V.; Gaponik, P. N.; Koldobskii, G. I. Russ J Org Chem 2001, 37, 1670; (b) Grigor'ev, Y. V.; Gaponik, P. N.; Koldobskii, G. I. Zh Org Khim 2001, 37, 1740; (c) Gaponik, P. N.; Voitekhovich, S. V.; Klyaus, B. G. Russ J Org Chem 2004, 40, 598; (d) Gaponik, P. N.; Voitekhovich, S. V.; Klyaus, B. G. Zh Org Khim 2004, 40, 624; (e) Voitekhovich, S. V.; Gaponik, P. N.; Lyakhov, A. S.; Ivashkevich, O. A. Tetrahedron 2008, 64, 8721; (f) Sukhanova, A. G.; Sakovich, G. V.; Sukhanov, G. T. Chem Heterocycl Compd 2008, 44, 1368; (g) Sukhanova, A. G.; Sakovich, G. V.; Sukhanov, G. T. Khim Geterotsikl Soedin 2008, 44, 1680.

[8] Koren, A. O.; Ostrovskii, V. A. Heterocycles 2000, 53, 1421.
[9] Koren, A. O. J Heterocycl Chem 2002, 39, 1111.

[10] Abboud, J.-L. M.; Foces-Foces, C.; Notario, R.; Trifonov, R. E.; Volovodenko, A. P.; Ostrovskii, V. A.; Alkorta, I.; Elguero J. Eur J Org Chem 2001, 16, 3013.

[11] (a) Gaponik, P. N.; Voitekhovich, S. V. Russ J Org Chem 1998, 34, 746; (b) Gaponik, P. N.; Voitekhovich, S. V. Zh Org Khim 1998, 34, 788. [12] (a) Ivashkevich, O. A.; Matulis, V. E.; Lyakhov, A. S.; Grigorieva, I. N.; Gaponik, P. N.; Sukhanov, G. T.; Filippova, Y. V.; Sukhanova, A. G. Chem Heterocycl Compd 2009, 45, 1218; (b) Ivashkevich, O. A.; Matulis, V. E.; Lyakhov, A. S.; Grigorieva, I. N.; Gaponik, P. N.; Sukhanov, G. T.; Filippova, Y. V.; Sukhanova, A. G. Khim Geterotsikl Soedin 2009, 45, 1519.

[13] (a) Voitekhovich, S. V.; Gaponik, P. N.; Ivashkevich, O. A. Russ Chem Rev 2002, 71, 721; (b) Voitekhovich, S. V.; Gaponik, P. N.; Ivashkevich, O. A. Usp Khim 2002, 71, 569.

[14] Koren, A. O.; Gaponik, P. N.; Ivashkevich, O. A.; Kovalyova, T. B. Mendeleev Commun 1995, 5, 10.

[15] (a) Voitekhovich, S. V.; Gaponik, P. N.; Pytleva, D. S.; Lyakhov, A. S.; Ivashkevich, O. A. Polish J Chem 2002, 76, 1371; (b) Ivashkevich, D. O.; Lyakhov, A. S.; Pytleva, D. S.; Voitekhovich, S. V.; Gaponik P. N. Acta Cryst 2003, C59, m221.

[16] (a) Baryshnikov, A. T.; Erashko, V. I.; Zubanova, N. I.; Ugrak,
B. I.; Shevelev, S. A.; Fainzil'berg, A. A.; Laikhter, A. L.; Melnikova,
L. G.; Semenov, V. V. Russ Chem Bull 1992, 41, 751; (b) Baryshnikov,
A. T.; Erashko, V. I.; Zubanova, N. I.; Ugrak, B. I.; Shevelev, S. A.;
Fainzil'berg, A. A.; Laikhter, A. L.; Melnikova, L. G.; Semenov, V. V.
Izv Akad Nauk Ser Khim 1992, 41, 958.

[17] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, J. T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh, PA, 2003.

[18] Becke, A. D. J Chem Phys 1993, 98, 5648.